§7. The Variational Principles of Mechanics Isaac Newton introduced "vectorial mechanics" $\overline{F} = m \overline{a}$ In a many-particle system (solid body, fluid) one has to determine the force on a particle exerted on it by <u>all</u> other particles -> Newton introduces "action= reaction" But: further assumptions on nature of forces have to be made -> solution is not unique Euler and Lagrange (~1750) introduced "analytical mechanics": · particle is no longer an isolated unit but part of a "system"

· incorporates "auxiliary conditions"; motion of solid body Tr. distance between any two points cannot change "rigid" -> Knowledge of forces maintaining Kinematical conditions is not necessary Similarly, the Kinematical condition during motion of fluid is that the volume of any portion must be preserved "Unifying principle": configuration space final state initial. - actual trajectory state Virtual variation systen

The length of a small segment of the
path is given by
$$ds = \sqrt{dx^2 + dy^2}$$

 $= dx \sqrt{1 + (\frac{dy}{dx})^2}$
 $= dx \sqrt{1 + (\frac{dy}{dx})^2}$
Together with
 $v(t) = \frac{ds}{dt} \iff \frac{dt}{ds} = \frac{1}{v(s)}$
we obtain for the total travel time T:
 $T = \int dt = \int \frac{1}{v(x)} ds$
 $= \frac{1}{17} \int \frac{\sqrt{1 + y(x)^2}}{\sqrt{x} - y} dx$, set $F(g,g/x)$
 $:= \frac{1}{17} \frac{1}{2} \frac{\sqrt{x}}{\sqrt{x} - y}$
Among all possible functions $y(x)$ we
want to find the particular one
which yields the smallest possible volue
of T.
 $minimize$ "functional" $I := \int F(g,g/x) dx$
subject to the constraints $y(a) = x$, $y(b) = S$.

$$\frac{General solution}{General solution} (for arbitrary F(g,g',x)):$$
Consider the function $g = f(x)$ which by
hypothesis gives a stationary value for F
 \rightarrow consider modification
 $\overline{F}(x) = f(x) + \varepsilon \phi(x)$, $\varepsilon \ll 1$
 $arbitrary differentiable function$
Then, at point x, we have:
 $Sg = \overline{F}(x) - f(x) = \varepsilon \phi(x)$, $Sx = 0$
with constraints
 $[Sf(x)]_{x=a} = 0$, $[Sf(x)]_{x=b} = 0$
Note that
 $d_x Sy = d_x [\overline{F}(x) - f(x)] = d_x \varepsilon \phi(x) = \varepsilon \phi'(x)$
 $Sd_x f(x) = \overline{F}(x) - f'(x) = (g' + \varepsilon \phi') - g' = \varepsilon \phi(x)$
 $\rightarrow d_x Sy = Sd_x y$
Similarly, one can show
 $S\int_a F(x) dx = \int_a SF(x) dx$

Now we compute

$$SF(Y, Y', x) = F(Y + s\phi, g' + s\phi', x)$$

 $- F(Y, Y', x)$
 $= z\left(\frac{\Im F}{\Im Y}\phi + \frac{\Im F}{\Im Y}\phi'\right)$
 $\Rightarrow S\int_{a}^{b} F dx = \int_{a}^{b} SF dx = s\int_{a}^{b} \left(\frac{\Im F}{\Im Y}\phi + \frac{\Im F}{\Im Y'}\phi'\right) dx$
A stationary $y = f(x)$ satisfies
 $\frac{gI}{s} = \int_{a}^{b} \left(\frac{\Im F}{\Im Y}\phi + \frac{\Im F}{\Im Y'}\phi'\right) dx = 0$
Now perform integration by parts on
second term:
 $\int_{a}^{b} \frac{\Im F}{\Im Y'}\phi' dx = \left[\frac{\Im F}{\Im Y'}\phi\right]_{a}^{b} - \int_{a}^{b} \frac{d}{dx}\left(\frac{\Im F}{\Im Y'}\phi\right) dx$
 $\Rightarrow \frac{SI}{s} = \int_{a}^{b} \left(\frac{\Im F}{\Im Y} - \frac{d}{\Im S}\frac{\Im F}{\Im Y'}\phi'\right) dx = 0$
(3)
 $\Rightarrow \frac{SI}{s} = \int_{a}^{b} \left(\frac{\Im F}{\Im Y} - \frac{d}{\Im S}\frac{\Im F}{\Im Y'}\phi'\right) dx$
 $\Rightarrow \frac{SI}{s} = \int_{a}^{b} \left(\frac{\Im F}{\Im Y} - \frac{d}{\Im S}\frac{\Im F}{\Im Y'}\phi'\right) dx = 0$
(4)
 $\Rightarrow \frac{\Im F}{S} = \int_{a}^{b} \left(\frac{\Im F}{\Im Y} - \frac{d}{\Im S}\frac{\Im F}{\Im Y'}\phi'\right) dx$
 $\Rightarrow \frac{SI}{s} = \int_{a}^{b} \left(\frac{\Im F}{\Im Y} - \frac{d}{\Im S}\frac{\Im F}{\Im Y'}\phi'\right) dx = 0$
(4)
 $\Rightarrow \frac{\Im F}{\Im Y'}\phi' dx = \left(\frac{\Im F}{\Im Y}\phi'\right) \phi' dx$
 $\Rightarrow \frac{SI}{s} = \int_{a}^{b} \left(\frac{\Im F}{\Im Y} - \frac{d}{\Im S}\frac{\Im F}{\Im Y'}\phi'\right) dx = 0$
(4)
 $\Rightarrow \frac{\Im F}{\Im Y'}\phi' dx = 0$
 $3 \frac{\Im F}{\Im Y'}\phi' dx = 0$

Zemma:
Equation (*) can only be satisfied
iff
$$E(x) = 0$$
 everywhere on $[a, b]$.
Proof:
Choose $\Phi(x)$ sith. it vanishes everywhere
except for an arbitrarily small interval
cround $x = \tilde{s}$ 3+0
 $0 = E(\tilde{s})\int \Phi(\tilde{s})ds \implies E(\tilde{s})=0$
 $\tilde{s}_{\pm 0}$
(*) + Zemma \longrightarrow obtain differential eq.
 $\tilde{s}_{\pm 0}$
(*) + Zemma \longrightarrow obtain differential eq.
 $\tilde{s}_{\pm 0}$
(*) + Zemma $\tilde{s}_{\pm 0}$
on entive interval $[a, b]$!
general form: $I = \int_{-L}^{L} (q_{1}, ..., q_{n}; \tilde{q}_{1}, ..., \tilde{q}_{n}; t) dt$
Demanding
 $\tilde{s}_{\pm 0}$
 \tilde

$$\frac{S7.2. The principal of virtual work}{assume that there are forces $\overline{F}_{i}, \overline{F}_{i}, ..., \overline{F}_{n}$
acting at points $P_{i}, P_{2}, ..., P_{n}$ of a
many-particle system
• assume that we perturb the system by
"virtual" displacements of $P_{i}, B_{i}, ..., P_{n}$
denoted by
 $S\overline{R}_{i}, S\overline{R}_{2}, ..., S\overline{R}_{n}$
(obeying kinematical constraints and
being "reversible", i.e. $S\overline{R}_{i} \iff -S\overline{R}_{i}$)
Principal of virtual work:
"The given mechanical system will be in
equilibrium if, and only if, the total
virtual work of all impressed forces
vanishes:
 $S\overline{W} = \overline{F}_{i} \cdot S\overline{R}_{i} + \overline{F}_{i} \cdot S\overline{R}_{2} + \dots + \overline{F}_{n} \cdot S\overline{R}_{n} = 0$
In cases where the forces \overline{F}_{i} are derivable
from a potential $V(q_{i}, ..., q_{n})$, that $S$$$

F: = - OV, the principal of virtual work is equivalent to stating: $SV = \frac{\partial V}{\partial q_1} Sq_1 + \frac{\partial V}{\partial q_2} Sq_2 + \dots + \frac{\partial V}{\partial q_n} Sq_n = 0$ If the equilibrium is "stable", the pot. evergy must assume its minimum value, while in general it only is stationary Example 2: Consider a system of uniform rigid bars of constant cross-section, freely jointed at their end-points. The two free ends of the chain are suspended. Find the position of equilibrium of the system. G: mass per unit length lx: length of Kth bar <u>, 1</u>(yr+yr+1)

Potential energy:

$$V = g \sum_{k=0}^{n-1} m_k \frac{1}{2} (y_{k+1} y_{k+1})$$

$$= \frac{\sigma g}{2} \sum_{k=0}^{n-1} (y_{k+1} y_{k+1}) \ell_k \qquad (1)$$

Contraints :

$$l_{\kappa}^{2} = (x_{\kappa_{t1}} - x_{\kappa})^{2} + (y_{\kappa_{t1}} - y_{\kappa})^{2} \qquad (2)$$

= $(\Delta x_{\kappa})^{2} + (\Delta y_{\kappa})^{2}, \quad k = 0, 1, \dots, n-1$
= fixed !

$$Task : Find stationary value ofpotential in (1) for displacementsfor the y_k subject to the
contraints (2)

Question: How do we incorporate
contraints (2) into our
variational problem ?

First, let us find the continuum form
of the equations (1) and (2):
 $V = \int_{T_1}^{T_2} q \int x^{1^2} + q^{1^2} dt$ (3) $x^{1^2} + q^{1^2} = 1$ (4)$$

where we have assumed a parametric
form for the resulting curve:

$$X = X(t), \quad y = y(t)$$

Next, we will need
 $\frac{2emma \ 2:}{The stationary points of a functional}$
 $I = \int L(q_{1}, \dots, q_{n}, \dot{q}_{1}, \dots, \dot{q}_{n}) dt$
subject to constraints
(*) $f_{1}(q_{1}, \dots, q_{n}, t) = 0, \dots, f_{m}(q_{1}, \dots, q_{n}, t) = 0$
can be to constraints
(*) $f_{1}(q_{1}, \dots, q_{n}, t) = 0, \dots, f_{m}(q_{1}, \dots, q_{n}, t) = 0$
can be to blained by variation of
 $I' = \int L' dt, \ L' = L + \lambda_{1} f_{1} + \dots + \lambda_{m} f_{m}$
with respect to $q_{1}, \dots, q_{n}, \lambda_{1}, \dots, \lambda_{m}$
Proof:
Variation with respect to λ_{1} :
 $S_{\lambda_{1}}I' = \int_{t_{1}}^{t_{1}} (\frac{2L'}{2\lambda_{1}} - \frac{d}{2L'}) S\lambda_{1} = 0$
 $\rightarrow \frac{2L'}{2\lambda_{1}} = f_{1} = 0$ \longrightarrow automatically reproduces
constraints (*)

Coming back to our problem, we see that equations (3) and (4) together with Lama 2 result in finding the equilibrium with respect to the modified potential $\overline{V} = \int_{T_{i}}^{C_{i}} (\gamma + \lambda) \sqrt{x'^{2} + \gamma'^{2}} d\tau$ (Homework) §7.3 D'Alembert's Principle Definition 1 (The force of inertia): Consider the fundamental law of motion of Newton: $m \vec{q} = \vec{F} \iff \vec{F} - m \vec{q} = 0$ (*) We now define a vector I by I = - mã "force of inertia" -> equation (*) becomes F+I=0 -> have reduced dynamics to statics That is, by adding the force of inertia to a system, we can treat it as a static system and find its equilibrium

by applying the principl of virtual work!
Adding the force of inertia, we define the
effective force
$$\overline{F}_{R}^{e}$$
: $\overline{F}_{K}^{e} = \overline{F}_{K} + \overline{I}_{K}$
D'Alembert's principle:
The total virtual work of the effective
forces is zero for all reversible variations
which satisfy the given Rinematical
conditions:
 $\sum_{k=1}^{N} \overline{F}_{k}^{e} \cdot S\overline{R}_{k} = \sum_{K=1}^{N} (\overline{F}_{K} - M_{K} \overline{q}_{K}) \cdot S\overline{F}_{K} = 0$
 $\iff SV + \sum_{K=1}^{N} M_{K} \overline{q}_{K} \cdot S\overline{F}_{K} = 0$ (**)
 $= -S\overline{W}$ cannot be rewriten
as variation of scalar
function
Using $\sum_{K} M_{K} \overline{R}_{K} \cdot d\overline{R}_{K} = \sum_{K} M_{K} \overline{R}_{K} \cdot \overline{R}_{K} dt$
 $= \frac{d}{dt} (\sum_{k=1}^{N} M_{K} \overline{R}_{K}) dt = dT$
we see that (**) is equivalent to
 $dV + dT = d(V + T) = 0 \implies T + V = const. = E$
"conservation of energy"